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For numerical calculation of B,, we rewrite (22) as

2 kb
B =——“S(A,c)
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(24)
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The approximate values (16) and (14) are used.

Fig. 5 shows the results of a digital computer evaluation of
S(A,c) for ¢=5 1f c=b/a—1 (with A kept finite), then
S(4, ¢) tends to

o 1— e—ZmrA 1 |:,”2 0 e—2n77A

S(A71)= Z 3 ?_ Z

A =X = :l (26)

n=1 n2
An approximate evaluation of this series can be made, for various
A, on a programmable pocket calculator. S(A,1) has been plotted
on Fig. 5. Notice how close in value are the curves S(4,1) and
S(A,5). Other curves for S(4,c), where 1< ¢ <35, lie in the
narrow band between the two curves shown in Fig. 5. Because
of the insensitivity of S(A, ¢) to variations in b/a, it is a rea-
sonable approximation to use S(A,1) for S(A,c) whenever
1<b/a<5s.

For A <0.01, there is a useful asymptotic expression for (26):

S(A,1) ~2wln(—e—). (27)

27A
The error obtained in using (27) to approximate (25b) is about
1.7 percent when A =0.01, b/a =5, and shrinks with shrinking
Aorb/a.

III. NUMERICAL EXAMPLE

A lossless line has b=1 ¢cm and b/a=3. For the material
between the conductors, p = p, and € = 2.24 ¢,. The characteris-
tic impedance is Z, = 44.0 Q. Let a load of Z, = 44 Q be placed
in a gap of width d described by A=d/(b—a)=0.1. A com-
puter evaluation of (25b) gives S$(0.1,3) =10.29 (note that (26)
would yield 9.20). If f =600 MHz, we have, from (24), B, = 4.89
X103 ©. This capacitive susceptance in parallel with Z, vyields
an effective load impedance of 42.05— j 9.05 &, which is mod-
erately different from Z,.

In this example, the width of the gap is 0.067 cm, which is
2,/1000 of the wavelength A in the line. One should not use the
procedure described here unless the gap is very narrow compared
to A, as the theory fails to account for any distribution of the
load along the line but assumes it to be concentrated at one
location.
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Depth of Penetration of Fields from Rectangular
Apertures into Lossy Media
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Abstract — A widely used device for biomedical applications of micro-
wave energy is the dielectric-loaded waveguide operating in the TE,,
mode. We have calculated the (1/¢) energy penetration depth from such
antennas, modeled as rectangular apertures radiating into a lossy medium
with dielectric properties resembling those of tissue. The results are
presented in nondimensional form from which the characteristics of practi-
cal antennas can be estimated. Depending on the dielectric properties of
the medium and the size of the aperture, the effective penetration depth
can be limited by either the aperture size or the plane-wave penetration
depth; practical antennas fall between these two extremes. Experimental
results confirm the calculations.

I. INTRODUCTION

Several medical applications of microwave energy have been
developed that heat tissue (diathermy and hyperthermia) or mea-
sure tissue temperature from the microwave energy that is pas-
sively emitted from the body (radiometry). The simplest antenna
for such purposes (and one that is widely used) is a rectangular
waveguide placed against the surface of the body [1]-[3].

An important consideration is the effective depth of heating or
sensing. The field patterns in the tissue beneath an aperture can
be calculated using well-established theory [4], [5]. However,
these calculations are complex, and in discussing such appli-
cations investigators frequently cite the plane-wave penetration
depth in the tissues. In contrast, the heating or sensing occurs
primarily in the near field of the antenna with a sensitivity
function that depends strongly on both the antenna geometry
and the material properties of the medium. It is apparent that the
effective depth of heating or sensing can be far less than the
energy penetration depth of plane waves, We report the penetra-
tion depth of energy from rectangular apertures in nondimen-
sionalized form that can be easily applied to a variety of situa-
tions. This is a generalization of results previously reported by
Turner [6].
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II.  METHODS

Following the development in Stratton [7], the wave equation
can be cast in dimensionless form by normalizing distance to a
characteristic length ¢. The natural choice for this parameter is
the aperture width, which determines the cutoff frequency of the
principal mode (TE,;) of the guide. The dimensionless wave
number K for radiation in tissue is then defined as

K=ka= w(eopoe*)lﬂa

(1)
where w /2 is the frequency in Hz, u, and ¢, are the free-space
permeability and permittivity, and €* is the complex relative
permittivity of the medium. The dimensionless parameter K
contains the significant parameters for the design of the antenna:
the frequency, the dielectric properties of the tissue, and the
antenna size; the normalized penetration depth is calculated as a
function of this parameter. For the calculations presented below,
a 2:1 aspect ratio was assumed for the aperture, corresponding
to a normalized aperture width of 1 and a height of 1/2. In all
cases single-mode operation was assumed, with the guide operat-
ing at a frequency midway between cutoff for TE,, and TE,,
modes. )

Most of the calculations employed the mode-matching tech-
nique as described by Harrington {8]. The rectangular aperture is
modeled as a rectangular waveguide opening into a much larger
waveguide filled with the tissue dielectric. The field distribution
in the larger guide is calculated as a superposition of its normal
modes:

x X maX nayY
E(Z)=Y Y Em”cos( c )cos( D )e‘y'""z 2

m=1n=0
odd

\/ ma\2 (nw\? 5
B[ I LT
C D

and C and D are the dimensions of the larger guide, normalized
to the width of the aperture, ¢. The origin of the coordinate
system is taken as the center of the aperture, with the Z axis
projecting into the medium normal to the plane of the aperture.
Only those values of m and n for which the fields satisfy the
required boundary conditions at the walls of the guide are
allowed. The field in the aperture was assumed to correspond to
the TE,, mode for the smaller guide:

{EOCOS('”X) MESHE(ES:
Ey = )
0 otherwise

where

(3)

where the aperture width and height are 1 and 1/2, respectively,
in normalized units. The coefficients E, , are then obtained from
the requirement

E,,= (SG,I/CD)/OIA_/OUZCOS(WX) cos(maX/C)

cos(nn¥/D)dYdX (4)
where
€ = { 1 n=0
" 2 n=1,2,---.

This model is an approximation in several respects. First,
(2)-(4) provide a discrete approximation to the fields because of
the finite dimensions of the larger guide. Second, the model
assumes that the plane that separates the two guides is a perfect
conductor except at the opening of the smaller guide. Finally, the
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Fig. 1. Contour plot showing the penetration depth of the energy beneath
the rectangular aperture, normalized by a, the width of the aperture. The
abscissa and ordinate represent the real and imaginary parts of the square
of the complex wavenumber for the radiation in the medium, normalized by
the aperture width (eq. (1)). The symbols indicate the squares of the
complex wavenumbers for the apertures and hiquids summanzed in Table L.
All values are given as common logarithms.

model assumes that the field distribution over the aperture corre-
sponds to the TE,, mode of the smaller guide; in reality the
aperture field corresponds to a superposition of incident and
reflected TE|; and evanescent higher modes propagating back
into the smaller guide. However, repeated calculations in which
the dimensions of the larger guide were varied show that errors of
the first kind are negligible. (For most of the calculations re-
ported below C=8 and D =4.) Experimental data, discussed
below, show that these approximations are adequate for present
purposes. Important advantages of the mode-maiching technique
are its ease and speed of calculation.

The fields were calculated along the Z axis, i.e., along the
perpendicular line extending from the center of the aperture into
the medinm. The energy penetration depth was taken to be the
position on the line at which the power density was reduced by a
factor 1/e from that at the aperture plane. More than 200
calculations were done for different values of the nondimen-
sionalized parameters, and the results interpolated to produce the
contour plots shown in Fig, 1.

Several tests were performed to ensure the accuracy of the
results. For all of the cases in which experimental data were
obtained, the mode-matching calculations were checked using the
plane-wave spectrum method [8]. In addition, selected results
were confirmed by direct integration of the vector potential
equations [8]. All of these results were in excellent agreement.

As a final test of the calculations, the energy penetration depth
was measured using three different apertures and two liquids
(water and ethanol). A small sensing antenna was mounted on a
movable jig, and the transmission coefficient between the wave-
guide and the antenna was measured using a network analyzer
(Hewlett-Packard model 8410). Since the ethanol contained a
small fraction of water, its dielectric properties were measured
using techniques previously described [9]. The measured penetra-
tion depths agreed well with the calculations (Table I) within an
experimental uncertainty of roughly 0.1 cm.
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TABLE 1

CALCULATED AND MEASURED ENERGY PENETRATION DEPTHS FOR APERTURES RADIATING INTO WATER

OR ETHANOL COMPARED WITH THE PLANE-WAVE PENETRATION DEPTH
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Aperture ) Penetration Depth
width Symbol Fr(egt}llezr;cy Liqud  Permittivity (cm)

(cm) ¢ €’ Calculated Measured Plane Wave
73 O 31 ethanol 108 10.5 .56 .6 .53
73 + 39 " 9.1 9.3 46 4 44
48 X 3.9 i 9.1 93 46 4 44
48 & 4.7 ” 80 ., 82 41 4 .39
1.5 O 39 ” 9.1 9.3 20 2 44
1.5 & 4.7 " 8.0 82 21 2 39
7.3 A 31 water 7710 110 1.01 1.2 1.23
73 v 39 " 750 160 .67 N .67
4.8 b 39 " 750 160 .64 6 67
48 x 4.7 " 740 170 49 5 .52
1.5 * 39 " 750 160 49 5 .67
1.5 o2} ‘4.7 ” 740 170 47 4 52

The dielectric properties of the ethanol are measured values, which differ slightly from literature values

because of slight contamination by water.

The symbols indicate the locations of these apertures on Fig, 1.

III. REesuLTs AND DISCUSSION

Fig. 1 shows the logarithm of the normalized penetration depth
& as a function of the square of the wavenumber K defined in
(1). The range of the abscissa corresponds to aperture widths
roughly 0.5 to 8 times the wavelength of the radiation in the
medium for reasonable values of the parameters. This method is
presentation allows easy calculation of the effective penetration
depth: the aperture width and the complex permittivity of the
medium determine the real and imaginary parts of K and thus
the coordinates on the figure. The contour at that location then
gives the logarithm of the normalized penetration depth.

Two distinct regions appear in the figure, representing differ-
ent limiting cases: the upper left part and the right part.

In the upper left part of the figure, the penetration depth is
essentially independent of the abscissa. A numerical correlation
shows that with €” /e’ < 0.25 and log(w?py€qe’a®) >1, the effec-
tive penetration depth & is given approximately by

$=d/a
=0.4] afe /%)M (5)

where A* is the wavelength of the radiation in the medium and d
is the effective penetration depth in dimensional units. In this
region the aperture is electrically small and its size determines the
penetration depth.

In the right part of the figure, the penetration depth is inde-
pendent of the ordinate and approaches the plane-wave energy
penetration depth:

Ao

d=m[(1+(s”/s’)z)l/2—1]_1/2 (6)

where A, is the free-space wavelength.
These limits represent upper and lower bounds of the effective
penetration depth of the energy in the medium. Practical aper-

tures might approach either limit in biomedical applications. In
particular, in the frequency range 0.1-1 GHz, apertures used for
local hyperthermia treatments are electrically small and their
depths of effective heating would most likely be determined by
their dimensions rather than by the plane-wave penetration depth
of the energy in the tissue. The present results provide a simple
way to estimate this important quantity.
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