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For numerical calculation of B,, we rewrite (22) as REFEP.SNCES

where

and
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The approximate values (16) and (14) are used.

Fig. 5 shows the results of a digitaf computer evaluation of

S(ADC) for c =5. If c = b/a ~ 1 (with A kept finite),

s(A, c) tends to

then

(26)

An approximate evaluation of this series can be made, for various
A, on a programmable pocket calculator. S(A, 1) has been plotted
on Fig. 5. Notice how close in value are the curves S( A, 1) and
s(A,5). Other curves for s(A, c), where 1< c <5, lie in the
narrow band between the two curves shown in Fig. 5. Because
of the insensitivity of S( A, c) to variations in b/a, it is a rea-

sonable approximation to use S( A, 1) for S( A, c) whenever
l< b/a<5.

For A <0.01, there is a useful asymptotic expression for (26):

()S(A,l)-2wln & .

The error obtained in using (27) to approximate

1.7 percent when A = 0.01, b/a= 5, and shrinks

A or b/a.

III. NUMERICAL EXAMPLE

(27)

(25b) is about
with shrinking

A lossless line has b = 1 cm and b/a= 3. For the materiaf
between the conductors, p = PO and c = 2.24 (O. The characteris-
tic impedance is ZO= 44.00. Let a load of Z~ = 44 Q be placed
in a gap of width d described by A = d/(b – a) = 0.1. A com-

puter evaluation of (25b) gives S(0.1, 3) = 10.29 (note that (26)
would yield 9.20). If ~ = 600 MHz, we have, from (24), Bg = 4.89
x 10-30. This capacitive susceptance in parallel with Z~ yields
an effective load impedance of 42.05 – j 9.05 Q, which is mod-
erately different from Z~.

In this example, the width of the gap is 0.067 cm, which is
2/1000 of the wavelength A in the line. One should not use the
procedure described here unless the gap is very narrow compared
to X, as the theory fails to account for any distribution of the
load along the line but assumes it to be concentrated at one
location.
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Abstract — A widely used device for biomedical applications of micro-

wave energy is the dielectric-loaded wavegnide operating in the TE,0

mode. We have calculated the (l/e) energy penetration depth from such

antennas, modeled as rectangular apertures radiating into a lossy medium

with dielectric properties resembling those of tissue. The results are

presented in nondimensional form from which the characteristics of practi-

cal antennas can be estimated. Depending on the dielectric properties of

the medium and the size of the apertnre, the effective penetration depth

can be timited by either the apertnre size or the plane-wave penetration

depth practical antennas fall between these two extremes. Experimental

results confirm the calculations.

I. INTRODUCTION

Severaf medical applications of microwave energy have been

developed that heat tissue (diathermy and hyperthermia) or mea-

sure tissue temperature from the microwave energy that is pas-

sively emitted from the body (radiometry). The simplest antenna

for such purposes (and one that is widely used) is a rectangular

waveguide placed against the surface of the body [1]–[3].

An important consideration is the effective depth of heating or

sensing. The field patterns in the tissue beneath an aperture can

be calculated using well-established theory [4], [5]. However,

these calculations are complex, and in discussing such appli-

cations investigators frequently cite the plane-wave penetration

depth in the tissues. In contrast, the heating or sensing occurs

primarily in the near field of the antenna with a sensitivity

function that depends strongly on both the antenna geometry

and the material properties of the medium. It is apparent that the

effective depth of heating or sensing can be far less than the

energy penetration depth of plane waves. We report the penetra-

tion depth of energy from rectangular apertures in nondimen-

sionalized form that can be easily applied to a variety of situa-

tions. This is a generalization of results previously reported by

Turner [6].
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II. METHODS

Following the development in Stratton [7], the wave equation

can be cast in dimensionless form by normalizing distance to a

characteristic length a. The natural choice for this parameter is

the aperture width, which determines the cutoff frequency of the

principal mode (TEIO ) of the guide. The dimensionless wave

number K for radiation in tissue is then defined as

K= ku = o(cop,lc*)l’2a (1)

where 0/2 r is the frequency in Hz, KO and co are the free-space

permeability and permittivity, and c“ is the complex relative

permittivity of the medium. The dimensionless parameter K

contains the significant parameters for the design of the antenna:

the frequency, the dielectric properties of the tissue, and the

antenna size; the normalized penetration depth is calculated as a

function of this parameter. For the calculations presented below,

a 2:1 aspect ratio was assumed for the aperture, corresponding

to a normalized aperture width of 1 and a height of 1/2. In all

cases single-mode operation was assumed, with the guide operat-

ing at a frequency midway between cutoff for TEIO and TEZO

modes.

Most of the calculations employed the mode-matching tech-

nique as described by Barrington [8]. The rectangular aperture is

modeled as a rectangular waveguide opening into a much larger

waveguide filled with the tissue dielectric. The field distribution

in the larger guide is calculated as a superposition of its normal

modes:

.=,,,=, ‘] Facos(+’mnz‘2)Ey(Z)= ~ ~ E COS

odd

where

“=W32+(%)2-K2
and C’ and D are the dimensions of the larger guide, normalized

to the width of the aperture, a. The origin of the coordinate

system is taken as the center of the aperture, with the Z axis

projecting into the medium normal to the plane of the aperture.

Only those values of m and n for which the fields satisfy the

required boundary conditions at the walls of the guide are

allowed. The field in the aperture was assumed to correspond to

the TE1(I mode for the smaller guide:

(

~y = Eocos(z’x) IYI<+, IXI<;

o
(3)

otherwise

where the aperture width and height are 1 and 1/2, respectively,

in normalized units. The coefficients EW,,, are then obtainecl from

the requirement

E,,,,, = (8 C,1/CD)~1’4~1’2 COS( mX) COS( ntTTX/C)

. COS( nnY/D) dYdX (4)

where

c,, =
{

1 ~=()

2 n=l,2, . . . .

This model is an approximation in several respects. First,

(2)–(4) provide a discrete approximation to the fields because of

the finite dimensions of the larger guide. Second, the model

assumes that the plane that separates the two guides is a perfect

conductor except at the opening of the smaller guide. Finally, the
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Fig. 1. Contour plot showing the penetration depth of the energy beneath

the rectangular aperture, normahzed by u, the width of the aperture. The

abscissa and ordinate represent the real and lmagmary parts of the square

of the complex wavenumber for the radlatlon m the medium, normalized by

the aperture width (eq. (l)). The symbols indicate the squares of the

complex wavenumbers for the apertures and hqmds summarized in Table I.

All values are gwen as common logarithms,

model assumes that the field distribution over the aperture corre-

sponds to the TEIO mode of the smaller guide; in reality the

aperture field corresponds to a superposition of incident and

reflected TELO and evanescent higher modes propagating back
into the smaller guide. However, repeated calculations in which
the dimensions of the larger guide were varied show that errors of
the first kind are negligible. (For most of the calculations re-
ported below C = 8 and D = 4.) Experimental data, discussed

below, show that these approximations are adequate for present

purposes. Important advantages of the mode-matching technique

are its ease and speed of calculation.

The fields were calculated along the Z axis, i.e., along the

perpendicular line extending from the center of the aperture into

the medium. The energy penetration depth was taken to be the

position on the line at which the power density was reduced by a

factor I/e from that at the aperture plane. More than 200

calculations were done for different values of the nondimen-

sionalized parameters, and the results interpolated to produce the

contour plots shown in Fig. 1.

SeveraJ tests were performed to ensure the accuracy of the

results. For all of the cases in which experimental data were

obtained, the mode-matching calculations were checked using the

plane-wave spectrum method [8]. In addition, selected results

were confirmed by direct integration of the vector potentiaf

equations [8]. All of these results were in excellent agreement.

As a final test of the calculations, the energy penetration depth

was measured using three different apertures and two liquids

(water and ethanol). A small sensing antenna was mounted on a

movable jig, and the transmission coefficient between the wave-

guide and the antenna was measured using a network analyzer

(Hewlett-Packard model 8410). Since the ethanol contained a

small fraction of water, its dielectric properties were measured

using techniques previously described [9]. The measured penetra-

tion depths agreed well with the calculations (Table I) within an

experimental uncertainty of roughly 0.1 cm.
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TABLE I
CALCULATED AND MEASURED ENERGY PENETRATION DEPTHS FOR APERTURES RADIATING INTO WATER

OR ETHANOL COMPARED WITH THE PLANE-WAVE PENETRATION DEPTH

Aperture Penetration Depth

Symbol
Frequency

Width Liquid Perrnittivity
(GHz)

(cm)

(cm) e’ c// Calculated Measured Plane Wave

7.3 0 3.1 ethanol 10.8 10.5 .56 .6 .53
7.3 + 3.9 ,, 9.1 9.3 .46 .4 .44
4.8 3.9 ,, 9.1 9.3 .46 .4 .44
4.8 ; 4.7 ,, 8.0 8.2 .41 .4 .39
1.5 0 3.9 ,,

9.1 9.3 .20 .2 .44
1.5 ❑ 4.7 r, 8.0 8.2 .21 .2 .39
7.3 A 3.1 water 77.0 11.0 1.01 1.2 1.23
7.3 v 3.9 ,, 75.0 16.0 .67 .7 .67
4.8 E 3.9 r, 75.0 16.0 .64 .6 .67
4.8 4 4.7 // 74.0 17.0 .49 .5 .52
1.5 * 3.9 r, 75.0 16.0 .49 .5 .67
1.5 ❑ ‘4.7 ,, 74.0 17.0 .47 .4 .52

The dielectric properties of the ethanol are measured vahres, which differ slightly from literature vahres
because of slight contamination by water.

The symbols indicate the locations of these apertures on Fig. L

III. RESULTSAND DISCUSSION

Fig. 1 shows the logarithm of the normalized penetration depth
8 as a function of the square of the wavenumber K defined in
(l). The range of the abscissa corresponds to aperture widths
roughly 0.5 to 8 times the wavelength of the radiation in the
medium for reasonable values of the parameters. This method is
presentation allows easy calculation of the effective penetration
depth: the aperture width and the complex permittivity of the
medium determine the real and imaginary parts of K2 and thus
the coordinates on the figure. The contour at that location then
gives the logarithm of the normalized penetration depth.

Two distinct regions appear in the figure, representing differ-
ent limiting cases: the upper left part and the right part.

In the upper left part of the figure, the penetration depth is
essentially independent of the abscissa. A numerical correlation
shows that with c“/c’ <0.25 and log( m2pOcO(’a2 ) >1, the effec-

tive penetration depth 8 is given approximately by

8 = d/a

= 0.4[a@/A*]l 4 (5)

where X* is the wavelength of the radiation in the medium and d

is the effective penetration depth in dimensional units. In this

region the aperture is electrically small and its size determines the

penetration depth.
In the right part of the figure, the penetration depth is inde-

pendent of the ordinate and approaches the plane-wave energy
penetration depth:

d= +[(1+((’70’)’’’-1]-’” (,)

where A. is the free-space wavelength.

These limits represent upper and lower bounds of the effective

penetration depth of the energy in the medium. Practical aper-

tures might approach either limit in biomedical applications. In

particular, in the frequency range 0.1–1 GHz, apertures used for

local hyperthermia treatments are electrically small and their

depths of effective heating would most likely be determined by

their dimensions rather than by the plane-wave penetratio~ depth

of the energy in the tissue. The present results provide a simple
way to estimate this important quantity.
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